Complex Number Primer

| ⌛ 2 minutes read

📋 Tags:


Complex numbers in the context of CG1111A is not too challenging.
With enough practice, it is easy to solve complex number questions in CG1111A.

src: xkcd 2028

Useful Formulae

Consider an arbitrary complex number $x(t)$:

$ \text{1. Cartesian form: } x(t) = a(t) + jb(t) \\ ~ \\ \text{2. Polar form: } x(t) = r(t)e^{j \theta(t)} \begin{cases} r(t) = \sqrt{a^2 + b^2} \\ \theta(t) = \angle{x} = tan^{-1}(\frac{b}{a}) \end{cases} $

Phasor Arithmetic

Additional reading with more properties.

Products are phase sums

$ X\angle\phi_x \cdot Y\angle\phi_y = (X\cdot Y) \angle(\phi_x + \phi_y) $ Note: The dot refers to regular product (multiplication of 2 numbers).

Divisions are phase divisions

$ \frac{X\angle\phi_x}{Y\angle\phi_y} = (X/Y) \angle(\phi_x - \phi_y) $

Inversions

$ X\angle 0 = -X\angle \pi $

General Addition and Subtraction

Note: arctan is the same as tan^-1!
$ C_1 = x_1+jy_1 , ~ C_2 = x_2+jy_2 \\ ~ \\ C_1\pm C_2 = (x_1\pm x_2) + j(y_1 \pm y_2) \\ ~ \\ C_1\pm C_2 = \sqrt{(x_1\pm x_2)^2 + (y_1\pm y_2)^2} + \arctan((y_1\pm y_2)/(x_1\pm x_2)) \square $

Please verify the above on your own!
I used rectangular form since it’s simpler and more direct, but if you can derive using polar or cos/sin form, it should work as well.

General Properties and shortcuts

Challenge: Prove that the following identities are true.
Proofs1 and hints2 3 are appended below.

$ \text{1. } \frac{1}{j} \equiv -j \\ ~ \\ \text{2. } \frac{1}{(n \pm mj)} \equiv \frac{n}{(n^2+m^2)} \mp \frac{mj}{(n^2+m^2)} ~ \\ ~ \\ \text{3. } \sin (\omega t + \phi) \equiv \cos(\omega t + \phi - 90^\circ) \\ $

Extra: Why j, not i?

In the engineering world, i is often used to describe equations or physical phenomena such as your transient current. Recall that it is $i(t)$. To avoid ambiguity, we use j instead.


  1. $ \frac{1}{j} = \frac{j}{j^2} = -j $  ↩︎

  2. $ \frac{1}{n \pm mj} = \frac{n \mp mj}{(n \pm mj)(n \mp mj)} $  ↩︎

  3. $ sin(t) = cos(t- k*90), \text{k is an odd integer} $  ↩︎